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All isohedral simple tilings of 3D Euclidian space by tiles with �16 faces have

been determined. There are no such tilings by polyhedra with less than 14 faces.

For simple polyhedra with 14, 15 and 16 faces, there are respectively 10, 65 and

434 that fill space and a total of 23, 136 and 710 distinct tilings. The tilings by

14-face polyhedra are described in detail as are binodal (vertex 2-transitive)

isohedral simple tilings.

1. Introduction

Simple polyhedra are those in which exactly three edges meet

at each vertex.1 In simple tilings of three-dimensional space,

two such polyhedra meet in a shared face, three at each edge

and four at each vertex (i.e. in each case the minimum

number). Physical examples of such structures are provided by

foams and related cellular materials such as plant cell tissue

and the assembly of grains in polycrystalline materials. On the

atomic level, the framework of tetrahedrally coordinated

atoms in materials such as zeolites often corresponds to a

simple tiling; the structure of faujasite provides a well known

example. In isohedral tilings, all tiles are related by symmetry

operations of a symmetry group, which must be a space group

for tilings that fill all space. The skeleton of the tiling is the net

of vertices and edges, and we say that the net is carried by the

tiling.

In applications to crystal chemistry, we are particularly

interested in the conformations of these structures in which all

edges are equal and correspond to the shortest distances

between vertices; i.e. the positions of the vertices correspond

to the centers of packings of equal spheres, each of which is

in contact with exactly four neighbors. We refer to these

configurations as ‘sphere packings’ below.

In 1887, Lord Kelvin asked the question of the structure

that provided the solution to ‘the division of space with

minimum partitional area’ (Thomson, 1887). His solution was

based on a tiling of space by truncated octahedra (which have

six quadrilateral and eight hexagonal faces), slightly modified

to have curved edges so that the angles between all pairs of the

four edges meeting at each vertex are the ‘tetrahedral’ angle,

cos�1(�1/3) = 109.5� (instead of 90 and 120� for the Archi-

medean polyhedron with plane faces). Kelvin’s solution was

the best known until Weaire & Phelan (1994a) showed an

example of a subdivision into two different kinds of tile with

equal volume and significantly lower surface area for a given

volume of tile. Interestingly, the Weaire–Phelan structure is

found in many contexts in chemistry where it is usually known

as the type I clathrate structure. However, the optimum

solution to the Kelvin problem remains unknown, even for

isohedral tilings. For this reason, it is of interest to know what

isohedral tilings exist – a question we address here. We should

remark that Plateau conditions (Weaire & Hutzler, 1999) for a

stable dry foam: (a) that the faces intersect only three at a time

and at 120�, and (b) no more than four of the intersection lines

(or six of the faces) meet at a vertex where the angles between

the lines are all the tetrahedral angle cos�1(�1/3) (for the

proof, see Taylor, 1976), ensure that the solution to the Kelvin

problem will correspond to a simple tiling.

The Kelvin structure is often referred to as the sodalite

structure by crystal chemists; it occurs as the basis for a large

number of oxides, sulfides, nitrides and chlorides. Surprisingly,

it appears that no other simple isohedral tiling was known

until 1968 when Williams (1968) described two new structures

of packings of 14-face polyhedra derived from the Kelvin

structure and indicated their importance as idealized models

of foams. The structures have been referred to as W1 and W2,

respectively (O’Keeffe, 1998). A fourth simple 14-face space-

filling polyhedron appears to have been discovered by several

groups independently. Rosa & Fortes (1986) identified this

polyhedron (type II in their notation) and remarked that it

filled space when combined with its enantiomorph. The same

polyhedron was found in foams by Weaire & Phelan (1994b),

who called it the ‘twisted Kelvin cell’, and Aste et al. (1996)

showed that it tiled space. None of these works identified the

space groups of the packings or provided explicit coordinates.

However, tiling of space by the same polyhedron was also

identified in the crystal structure of BaCu2P4 by O’Keeffe &

Hyde (1996). O’Keeffe (1998) considered structures dual to

certain high-coordination sphere packings and showed that in

addition to the Kelvin structure (K) and the W1 and W2

structures, there were three distinct packings of the twisted

Kelvin cell, and a sixth structure involving a fourth kind of

14-face polyhedron called O. The coordinates for all these

structures as 4-coordinated sphere packings were given.

1 In the present context, a polyhedron has a graph that is planar and
3-connected.



Simple isohedral tilings, which can be realized as 4-coordi-

nated sphere packings, by polyhedra with more than 14 faces

are also known. Aste et al. (1996) identified a 16-face tile and

the tiling by this polyhedron (the ABR polyhedron) was

described by O’Keeffe (1997). An isohedral tiling by a poly-

hedron (the ‘�-Sn dual polyhedron’) with 18 faces was

described by O’Keeffe & Sullivan (1998).

Ferro & Fortes (1985) described the topology (Schlegel

diagrams) of some polyhedra with up to 26 faces that filled

space by translation alone. The tiles corresponding to these

polyhedra are of necessity non-convex as it is well known that

the Kelvin structure is the only simple tiling by convex poly-

hedra that fill space by translation alone (parallelohedra).

Nevertheless, O’Keeffe (1999a) showed that all these tilings

could be realized as 4-coordinated sphere packings. An

example with 32 faces is adduced below.

All the work described above was essentially empirical

discovery, and leaves many questions unanswered. There is a

well known result that is a simple consequence of Euler’s

theorem for polyhedron packings (see e.g. O’Keeffe & Hyde,

1996) that for simple tilings the average number of edges per

face is n = 6 – 12/F, where F is the average number of faces per

polyhedron. It has also been established that n > 9/2 (Luo &

Stong, 1993), which translates into F > 8. This limit can be

rapidly approached by recursively replacing the vertices of a

simple tiling by a tetrahedron of vertices (O’Keeffe, 1999b).

For isohedral tilings in which the polyhedra can relax to the

shape of a minimal foam without combinatorial change, it has

been shown that F � 14 (Kusner, 1992). In fact, exhaustive

generation of all possibilities, as described below, shows that

this lower limit obtains without qualification. We (Delgado

Friedrichs et al., 2002) have also described an isohedral simple

tiling with F =1, so there is no upper limit to F. The largest

known convex simple isohedral tile with equal edge lengths is

the 18-face �-Sn dual tile (O’Keeffe & Sullivan, 1998).

As far as we are aware, prior to this work, there have been

no results on enumeration of the numbers of distinct isohedral

tilings by tiles of a given number of faces, although some

important related enumerations have been reported recently.

Of these we mention that it has been established that there

are exactly nine vertex transitive (uninodal) simple tilings

(Delgado-Friedrichs & Huson, 1999); the Kelvin structure is

the only isohedral one. Interestingly, seven of the uninodal

structures correspond to the frameworks of known zeolite

structures.

2. Method

The generation of isohedral simple tilings was performed as

follows: first, all simple polyhedra were generated using the

program plantri by Brinkmann & McKay (2001). More

precisely, plantri generated simplicial polyhedra (polyhedra

with only triangular faces) with up to a specified number of

vertices and dualized each of the results to obtain a simple

polyhedron with the corresponding number of faces. The

generation strategy used in that program goes back to an idea

of Eberhard (1891), who proved that every triangulated

polyhedron can be obtained from the tetrahedron by a series

of simple modifications. These are of three types:

(a) a triangle is subdivided into three triangles around a

common new vertex;

(b) a pair of adjacent triangles is replaced by a configuration

of four triangles around a common new vertex;

(c) a triple of triangles that together form a pentagon is

replaced by five triangles around a common new vertex.

The generation of triangulated polyhedra is achieved by

systematically performing all possible sequences of such

transformations until the desired number of vertices is

obtained.

The generation is very fast owing to a clever optimization

technique known as the canonical predecessor method

(McKay, 1998). This technique guarantees that every poly-

hedron the program reports is new without the need to check

this by explicitly looking at the list of previous results. This is

very important because the same polyhedron would otherwise

be obtained by a large number of different modification

sequences.

For each simple polyhedron in the list, we determined all

topologically different isohedral simple tilings by that poly-
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Figure 1
Schlegel diagrams for 14-face polyhedra that form isohedral simple
tilings. The numbers are the same as in Table 2.



hedron, if any, in the following way [c.f. steps (A1) to (A5) as

described by Delgado-Friedrichs & Huson, 1999].

(A1) First, we specified the site symmetry that the poly-

hedron should have in the completed tiling. This can be any

subgroup of its full symmetry group that fulfilled the crystal-

lographic restriction. Thus we started by enumerating all these

subgroups.

(A2), (A3) For each of the subgroups, we systematically

generated all the ways in which adjacent copies of the poly-

hedron could be attached to it and which were compatible

with the given symmetry. An important restriction here is that

the final tiling must be simple, so at each edge we must have

exactly three copies coming together. Thus, steps (A2) and

(A3) as described before (Delgado-Friedrichs & Huson, 1999)

were combined into one step. In essence, this step produced a

list of ‘blueprints’ or building instructions for tilings.

(A30) As in this study we are only interested in topological

types, we kept only those blueprints that did not allow for any

additional symmetries. To illustrate this, imagine a tiling of the

plane by rectangles in the fashion of bricks in a brick wall.

Although this tiling is topologically equivalent to a regular

honeycomb, it does not exhibit the full symmetry of the

honeycomb and may therefore be rejected. This criterion can

be determined from its blueprint even without knowing the

actual tiling.

(A4) Not every blueprint produced in the previous steps

was actually realizable. We had to solve the existence problem

for each blueprint, i.e. determine if it corresponded to a tiling

of ordinary space (Delgado-Friedrichs, 2001).

(A5) Finally, for each realizable blueprint, we constructed a

corresponding tiling. As an efficient way to represent blue-

prints of tilings in the computer, we used the Delaney symbol

approach as described, for example, by Delgado-Friedrichs et

al. (1999).

3. Results

3.1. The numbers of distinct tilings

In Table 1, we list the number of simple polyhedra with N

faces, the number of polyhedra (tilers) that form isohedral

tilings and the number of isohedral tilings. Note that, as a

given polyhedron may form more than one tiling, the number

of tilings is larger than the number of tilers. A chiral poly-

hedron will have left and right enantiomorphs but these are

counted as just one tiler and an isohedral tiling may contain

both enantiomorphs.

Notice in particular that there are no isohedral simple

tilings with tiles of less than 14 faces, but respectively 23, 136

and 710 isohedral simple tilings for tiles with 14, 15 and 16
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Figure 2
Slightly exploded views of fragments of the 23 isohedral simple tilings by 14-face tilers. The symbols are the same as in Table 2.



faces. As the number of distinct simple polyhedra increases

exponentially with the number of faces [Tutte (1980);

>5 � 1010 with 20 faces (Brinkmann & McKay, 2001)], we

expect the number of isohedral simple tilings to increase

dramatically also, and indeed with present computers and

algorithms, even if desired, the generation would not be

practical for polyhedra with more faces.

Crystallographic data (unit-cell parameters, coordinates of

vertices etc.) can be found for all the structures discussed here

at http://okeeffe-ws1.la.asu.edu/RCSR/home.htm.

3.2. Tilings with 14-face tiles

The 14-faced polyhedra of the isohedral simple tilings all

have faces that are 4-, 5- or 6-gons; in Table 1, they are

referred to as ‘4–6 tilers’ and the corresponding tiling as ‘4–6

tilings’. Schlegel diagrams of the polyhedra are shown in Fig. 1

in which each tile is assigned a number. Table 2 lists the tilings

and they are illustrated in Fig. 2. Notice that the number of

four-sided and five-sided faces are related by 2n4 + n5 = 12.

If the number of kinds of vertex, edge, face and tile in the

tiling is p, q, r, s, the transitivity (Delgado-Friedrichs & Huson,

2000) is pqrs – for isohedral tilings it is pqr1. Generally

speaking, the structures of most interest in crystal chemistry

have small values of transitivity (considering the array pqrs as

a single number, Delgado Friedrichs et al., 2003a,b); it may be

seen that the structures of Table 2 mainly have large values. In

this connection, we remark that, although the number of

isohedral simple tilings is (presumably) infinite, the number of

uninodal (vertex transitive) simple tilings is only nine and only

one of these (sod) is isohedral. In fact of the 869 tilings found

in this work, only one, two and nine are respectively uninodal,

binodal and trinodal. All the tiles have three- and/or four-

sided faces.2

3.3. Binodal isohedral simple tilings

The duals of simple tilings are tilings by tetrahedra, and an

alternative approach to enumerating simple tilings is to

enumerate tilings by tetrahedra. Delgado-Friedrichs et al.

(1999) found 117 2-isohedral tilings of tetrahedra of which 11

were vertex transitive. Dualization of these gives 11 binodal

(vertex 2-transitive) isohedral tilings. We have met two

already (isq and isx, cf. Table 2), a third (bsv) is the �-Sn dual
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Figure 3
Nine binodal isohedral tilings. For details see Table 3.

Table 2
Data for isohedral simple tilings by 14-faced tiles.

The tile number refers to the tiles identified in Fig. 2. n5 is the number of five-
sided faces per tile. p, q and r are the numbers of kinds of vertices, edges and
faces respectively in the tiling. The symbols under OK98 are those of O’Keeffe
(1998).

Tile n5 Tiling Symmetry p q r OK98

1 0 sod Im�33m 1 1 2 K
2 4 isa P42/mbc 5 7 7 W2

2 4 isy Pnma 3 7 6 O
3 4 isr P42/ncm 4 5 5
4 6 ize Pccn 7 12 9
4 6 isf I41/acd 9 12 10
4 6 isg I41/a 8 12 9
4 6 ish P42/nbc 10 12 11
4 6 isi C2/c 7 12 10
4 6 isj Pbca 6 12 8
4 6 isk P21/c 6 12 9
5 8 isl Pbcn 3 7 5
6 6 isn P42/n 8 12 9
6 6 iso Pbca 6 12 8
6 6 isp P21/c 6 12 9
7 8 isq P42/mnm 2 3 3 W1

8 4 iss P6422 3 4 4 K0Q
8 4 isx Fddd 2 4 4 K0D
8 4 isu I41/acd 5 6 6
8 4 isw Fddd 5 7 7 K0DQ

9 8 isc Pbcn 4 7 6
9 8 isd I41/a 5 7 6

10 8 ism I�442d 5 7 5

Table 1
The numbers of simple polyhedra (total) with N faces, the numbers of
those that tile space (tilers) and the number of isohedral tilings (iso
tilings).

The last three columns refer to polyhedra with only four-, five- and/or six-sided
faces.

N Total Tilers Iso tilings 4–6 4–6 tilers 4–6 tilings

<14 58716 0 0 80 0 0
14 339722 10 23 59 10 23
15 2406841 65 136 93 11 24
16 17490241 434 710 153 5 25

2 Binodal isohedral simple tilings are discussed next. The trinodal tilings with
�16 faces mentioned in this paper are isl, iss and isy of Table 2; abr described
by O’Keeffe (1997); ksx and wsx (K16 and W216 of O’Keeffe, 1999a). The
others are jsc, jsd, jse. Crystallographic data for these are to be found at http://
okeeffe-ws1.la.asu.edu/RCSR/home.htm.



tile (O’Keeffe & Sullivan, 1998) and a fourth, here symbolized

bcv, was illustrated as 2-067 by Delgado-Friedrichs et al.

(1999). As far as we know, the others have not been described

before, so we give data and illustrations in Table 3 and Fig. 3,

respectively. Notice that the number of faces can be quite

large and in most cases the tiles are very far from spherical.

In two of the above 11 structures, those symbolized bcr and

bda, the tiles have pairs of faces with two common non-

adjacent edges. The graphs of these tiles are accordingly not

3-connected.3 Such tiles would not appear in our generation of

simple polyhedra if carried out to sufficiently large numbers of

faces, and the corresponding tilings perhaps should not be

considered as simple tilings.

bcr is a nice example of a complex solid (32 faces!) that fills

space using only translations.

A simple tiling may not be a natural tiling in the sense of

Delgado Friedrichs et al. (2003a,b). In those works, a natural

tiling associated with a net is defined as the tiling by the

smallest possible tiles that (a) preserves the symmetry and (b)

in which all the faces are strong rings (rings that are not the

sum of smaller rings). For structure bcw, the simple tile has a

six-membered strong ring around the waist and including this

as a tile face gives the natural tiling (also isohedral, but not

simple) which has tiles with 14 faces, and the transitivity is now

2441.
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Table 3
Binodal isohedral tilings.

The point group refers to the symmetry of the tile. bcr and bda are not simple
tilings sensu stricto (see text).

Symbol Space group Point group Faces Face symbol Transitivity

bcr R�33m �33m 32 [318.46.146.182] 2441
bcv Ia�33d 32 17 [412.62.103] 2331
bcw Pa�33 �33 26 [312.62.1012] 2431
bcx P4332 32 18 [412.86] 2421
bcy R�33c 32 20 [36.56.66.122] 2441
bcz P4332 32 20 [32.512.76] 2431
bda I41/amd �44m2 26 [316.64.82.144] 2441
bsv I41/amd �44m2 18 [38.42.64.104] 2341
isq P42/mnm mmm 14 [42.58.64] 2331
isx Fddd 222 14 [44.54.66] 2441
pcu-g-e Ia�33 �33 20 [312.62.106] 2331

3 A connected graph is one in which there is a continuous path of edges
between every pair of vertices. A 3-connected graph is a connected graph for
which there is no pair of vertices whose deletion would leave the graph no
longer connected.


